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HIGH CONTRASTING DIFFUSION IN HEISENBERG GROUP:
HOMOGENIZATION OF OPTIMAL CONTROL VIA UNFOLDING"
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Abstract. The periodic unfolding method is one of the latest tools for studying multiscale prob-
lems like homogenization after the development of multiscale convergence in the 1990s. It provides
a good understanding of various microscales involved in the problem, which can be conveniently and
easily applied to get the asymptotic limit. In this article, we develop the periodic unfolding for the
Heisenberg group, which has a noncommutative group structure. The concept of greatest integer
part and fractional part for the Heisenberg group has been introduced corresponding to the peri-
odic cell. Analogous to the Euclidean unfolding operator, we prove the integral equality, L2-weak
compactness, unfolding gradient convergence, and other related properties. Moreover, we have the
adjoint operator for the unfolding operator, which can be recognized as an average operator. As an
application of the unfolding operator, we have homogenized the standard elliptic PDE with oscillat-
ing coefficients. We have also considered an optimal control problem with the state equation having
high contrasting diffusivity coefficients. The high contrasting coefficients are an added difficulty in
the analysis. Moreover, we have characterized the interior periodic optimal control in terms of the
unfolding operator, which helps us to analyze the asymptotic behavior.
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1. Introduction. The mathematical theory of homogenization was introduced
in the 1970s to describe the behavior of composite materials. Since then, several
homogenization methods have been developed for the FEuclidean setting, which has
commutative group structures. The research on homogenization in noncommutative
group structures is very limited. Among the early results on the homogenization in
noncommutative group structures, we cite the results by Biroli, Mosco, and Tchou [9].
In this paper, the authors construct explicitly a periodic tilling associated with the
Laplace operator Ay on the Heisenberg group. They have analyzed the asymptotic
behavior of its eigenfunctions in a domain with isolated Heisenberg periodic holes
with Dirichlet boundary conditions on their boundaries. To establish the convergence
to the homogenized problem, they employ Tartars energy method. Another piece of
work on homogenization in the Heisenberg group is due to Biroli, Tchou, and Zhikov
in [10]. The problem has been revisited in [13] with less regular holes. Due to less
regularity on holes, they could not employ the method as in [10], and they used the
method introduced in [29] by Zhikov.

The T'-convergence is another useful tool in homogenization theory. The I'-
convergence is well known for functionals that rely on Euclidean vector fields but
not for general vector fields. Maione, Pinamonti, and Cassano demonstrated the
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I'-compactness results for nonlinear functionals depending on general vector fields,
which in particular include Heisenberg vector fields, in [20]. They later investigated
a periodic homogenization problem in [19] and proved a I'-compactness theorem for
linear second order differential operators depending on general vector fields in Carnot
groups. For further reading in this direction, we refer to the articles [5, 12, 22] and
references therein.

Spanglo’s G-convergence and its extension called H-convergence by F. Murat
and L. Tartar are very important tools for multiscale analysis of differential opera-
tors with nonperiodic coefficients in the Euclidean setup. The main tools to prove
H-compactness and G-compactness are the div-curl lemma and the compensated com-
pactness. In Carnot groups, Baldi, Franchi, and Tesi in [7, 8] have proved the div-curl
lemma and compensated compactness and eventually proved the G-compactness and
H compactness. Further, the notion of H-convergence and G-convergence extended
by Maione, Paronetto, and Vecchi for more general differential operator in Carnot
group in [18, 21]. For further reading, we refer to the articles [14, 15] and references
therein.

Now, coming back to the Euclidean setting, among many methods developed
in the last 50 years, two-scale convergence and unfolding methods are very effective
techniques. The two-scale convergence was introduced by Nguetseng [27] and later
developed by Allaire in [4] which has been extensively applied by various authors over
the last few decades. The method of two-scale convergence in R™ is deeply related
to the group structure of R™ and the definition of the periodic functions in terms of
group translation.

The concept of the tiling and the periodic functions defined in [9] for the
Heisenberg group motivated Franchi and Tesi in [13] to define the concept of two-scale
convergence in the Heisenberg group. As an application of this two-scale convergence,
they have investigated a Dirichlet problem for a generalized Kohn Laplacian opera-
tor with highly oscillating Heisenberg-periodic coefficients in a domain perforated by
interconnected Heisenberg-periodic pipes. They have proved all the similar results as
in Euclidean two-scale convergence.

One of the latest methods for homogenization is the periodic unfolding method
introduced by Cioranescu, Damlamian, and Griso in [16], where the microscale is
introduced at the microlevel of the problem before taking the limit, whereas, in two-
scale convergence, the microscale is recovered at the limit. The unfolding operator
is also quite easy to apply in multiscale analysis and helps to see more deeply the
microscopic scale. For the reader’s sake, we recall the two-scale convergence and
unfolding operators in the Euclidean space setup and will see how they are related to
each other.

Let Y be the reference cell [0,1)" and € be a bounded domain of R™. The smooth
Y periodic (Euclidean sense) function space is denoted by C3°(Y).

DEFINITION 1 (two-scale convergence). A family of functions {u.} C L*(Q) is
said to be two-scale convergent to ug € L2(2 x Y) if for any ¢ € Ce(Q;C2(Y)), we
have

(1.1) lim [ u(z) (x g) do— L

ug(z, Y)Y (x,y) drdy.
e=0/q Y| Jaxy ol@:u)¥(e:3)

Let E.={ke€Z": ck+eY CQ}, Q. = UkeEs{kE +eY}, Ao = Q\Q. (Figure 1).
The greatest integer part and fractional part with respect to Y are denoted by [%]Y
and {%}Y , respectively. Note that the microscale y is given in the limit ug = ug(z,y),
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0 Ag
Fic. 1. Tiling of Q in the Fuclidean set up.

y €Y. We now introduce this scale at the ¢ level itself using the scale decomposition
of the Euclidean space R™. We will later give an appropriate scale decomposition
of the Heisenberg group. For z € R™, we can write the e-scale decomposition as
T=¢€ ([f}y + {f}y) . We introduce the scale y for varying {f}y and we have the
following definition.

DEFINITION 2 (unfolding operator). For a ¢ Lebesgue-measurable real valued
function on Q, the unfolding operator T¢ is defined as follows:

(1.2) T (¢)(z,y) = {g (5 [%] yt €y) fi(;r((x‘%yl;)eé/?sxx}f,

The test functions used in two scale convergence have one macroscale = which
tells the position in (2; another is microscale £ which tells the position of z in the
reference cell. In unfolding this concept is used very explicitly. More precisely, if we
take the domain as Q= J,cp_{ke +eY'} and ¢ € C2°(; CF(Y)), then, we can write

(1.1) as

lim [ wc(x)y® (x) do

e—0 Q

5113‘132/1@5%1/ ue(z) (x g) dx = ;IL%Z/;CHEY uc (ke +ey)y (ke + ey, y) dy

=t CLEl, =) o ), won) e

IS5 IS5 I p— 1
mgl_rg% QXyT (ue)(z,y) T (%) (2, y) dxdy—m QXyUo(x,y)#J(fv,y)dwdy.

Observe that the definition of two-scale convergence is reduced to weak convergence
in L2(Q x Y), and it is easy to apply as it is technically less demanding.

There are some advantages to using this method; for example, while doing optimal
control problems in a periodic setup, the optimal control is easily characterized by
the unfolding of the adjoint state, which helps to analyze asymptotic behavior; see
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[2, 3, 23, 25, 26]. This method reduces the definition of two-scale convergence in L?(2)
to weak convergence of the unfolded sequence in LP(Q x Y) for 1 < p < co. This is
a very effective method in analyzing the various multiscale problems; for details, see
[1, 17] and references therein. The unfolding method in R™ is intensely dependent on
the group structure of R”. We aim to develop a similar type of unfolding operator for
the Heisenberg group. As we have already mentioned the concept of periodic functions
and tiling in the Heisenberg group H' was introduced in [9], which motivates us to
define the greatest integer part for x € H!, that is, [z]y and fractional {z}y. Using
these definitions, we have defined unfolding operator T in the Heisenberg group.
The definition of T° for H' keeps periodic functions unchanged. As an application
of this unfolding operator, we have considered two homogenization problems. First,
we homogenize a PDE —divy(A®Vy) with Heisenberg-periodic oscillating coefficients
in an open bounded domain Q C H!. This model PDE is also considered in [13],
in a perforated domain where they have used two-scale convergence to analyze the
asymptotic behavior.

To demonstrate the periodic unfolding method’s applicability, we homogenize an
interior optimal control problem with highly contrasting diffusivity coefficients. The
homogenization of PDEs with high contrasting diffusivity coeflicients in a Euclidean
domain is a very interesting and useful topic; for example, see, [6, 11, 24, 28]. In
these articles, the homogenization procedure was performed using an extension op-
erator. But this kind of extension operator is unavailable in the Heisenberg group.
Recently in an interesting work [25], the present authors have analyzed the asymp-
totic behavior of an optimal control problem with a high contrasting diffusivity
coefficient in an oscillating domain without using an extension operator but with
the help of a modified unfolding operator. In the present case, we will also use
the periodic unfolding operator for the Heisenberg group for the problem under
consideration.

The rest of this article is organized as follows. In section 2, we recall the definition
and properties of periodic and nonperiodic function spaces in the Heisenberg group.
In section 3, the definition of [z]g, {«}m, unfolding operators, and adjoint operators
are introduced. Properties and their proof are also given here. Finally, in section 4,
we consider a model PDE with oscillating coefficients, homogenize it, and also show
the characterization of the interior periodic optimal control for the interior periodic
optimal control problem. We did not present the final homogenization of the optimal
control problem as it follows along similar lines. Moreover, we have also applied this
unfolding operator to homogenize an optimal control problem with high contrasting
diffusivity coefficients.

2. Preliminaries. Here, we introduce required notations which will be used
throughout the article and some preliminaries. We denote the 1-dimensional Heisen-
berg group by H!' =2 R? and a typical point in H' is denoted by x = (x1,22,73). For
p=(p1,P2,03),9=(q1,42,43) € H', the group operation is p-q = (p1 +q1,p2 + g2, p3 +
q3+2(p2g1 —p1g2)). The inverse of x € H' is 27! = (—x1, —x2, —23). The family of non-
isotropic dilations are denoted by dy, defined as 6y (x) = (Ax1, Axe, \223) for x € HY.
The left translation operator corresponding to p € H' is denoted by 7, and defined
as Tp(z) =p-x for x € H'. We consider the following homogeneous norm with re-
spect to d; for x € H!, |20 = maxz{\/2} + 23, \/|z3|}. The associated distance
between any p,q € H' is given as d(p,q) = |[p~! - ¢||lec- There is a relation be-
tween this distance and Euclidean distance (see [13]), which is stated in the following
proposition.
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PROPOSITION 3. The function d is a distance in H'. Further, it is homogeneous
and left translation invariant, that is, for any p,q,x € H' and A >0,

d(é)\qad)\x) = )\d(q,$) and d(quanx) :d(Q7x)
For any bounded subset 2 of H!, there ewist positive constants c1(£2),c2(2) such that

c1(Q)|p —qlrs < d(p,q) < c2(N)V|p — qlrs.

Here | - |gs denotes the Euclidean norm.

In particular, the induced topology by d and the Euclidean topology coincide on
H'. The standard Lebesgue measure is the left and right invariant Haar measure for
the group. For any measurable set S C H!, the Lebesgue measure of S is denoted by
|S|. Because of the anisotropic dilation dy for A > 0, we have |5, (S)| = A*|S|. That is
why the vector space dimension of H' is 3, but the Hausdorff dimension is 4.

The Lie algebra of the left invariant vector fields of H' is given by

0 0 0 0 0
—axl 871‘37 XQ—@—QLIHT%, anng—a—x;g.

The only nontrivial commutator relation is, [X7, Xs] = X1 X5 — X2 X1 = —4X3. The
horizontal bundle HH' is the span of the vector field { X1, X5}. Hence, we will identify
a section ¢ of HH' with the function ¢ = (¢1,$2) : H' — R2.

Function spaces (see [13]). Throughout this article, @ C H! is a bounded
domain. For any integer k > 0, C*(Q2), C*°(£) denote the usual differentiable function
spaces in the Euclidean sense. We denote by C*(€2; HH!'), for k >0, the set of all C*
sections of HH'. Now, we will define gradient and divergence as follows.

DEFINITION 4. Let f € C1(Q) and ¢ = (¢1,¢2) € CH(Q; HH') be a continuously
differentiable section of HH'. Define Vuf := (X1 f, Xof) anddivgd = X1¢1 + Xo¢s.

Note that both Vy, divy are left invariant differential operators. Also, Vg f can be
defined as a section of HH' as Vi f = (X1 f)X1 + (X2f)X2. The Heisenberg gradient
Vu can be written in terms of Euclidean gradient V as

Vi =C(z)V, where C=C(z)= {1 0 2z } .

0 1 72%1

Similarly, divg¢ = div(C?¢), where div is the Euclidean divergence in R® and C? is
the transpose of the matrix C.
For 1 <p < oo, LP(Q)) denotes the usual Euclidean p-integrable space. Here, we
will introduce all the necessary nonperiodic function spaces:
(i) The set of all smooth sections of HH! is denoted by C*°(Q; HH!). Similarly the
compactly supported smooth sections of HH' are denoted by C°(€; HH?').
(ii) Analogously to a standard Euclidean H'(£2) Sobolev space, we have the fol-
lowing Heisenberg Sobolev spaces, H:(Q) = {f € L*(Q): X1 f, Xof € L*(Q)}.
Further, C*°(Q) N HE(Q) is dense in HE ().
(iii) The closure of C2°(Q) in Hg(€2) is denoted by H ().
Throughout this article, we will denote the cube [0,2]® by Y. We use this cube of side
length 2 instead of [0, 1]® to avoid the intersection of tiles in the Heisenberg periodic
setting. A set G C H! is said to be Y-periodic if for any = € H' and k € Z3, the
translations 7o (7) € G. The space H! is indeed Y-periodic. In this article, we will
use H' as a Y-periodic set just like R™ =4, .. ([0,1)" + k).
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(i) Periodic function: Let f be a real valued function defined on H'. The function
f is said to be Y-periodic if for any k € Z3, f(7or(z)) = f(x) for all x € H!.
A section ¢ in HH! is Y-periodic if the canonical coordinates are Y-periodic.

(ii) We denote C'Zy(Y") as the space of smooth real valued Y-periodic functions.

(ili) For 1 <p < 0o, we denote by L%, ;(Y), the space of Y-periodic functions such
that fly € LP(Y) endowed with the norm || f{|z»(v).
(iv) Similarly, Hj (V) denotes the space of all f € L3y such that X;f €
L2(6,(Y)) for all A >0 endowed with the norm £l vy
We now introduce the periodic vector valued function spaces:

(i) We denote by C2°(Q;C3y(Y)), the space of all smooth functions on € x H*
such that for any ¢ € C2°(Q; CFy(Y)), © = ¢(,+) is C° from Q — CFy(Y)
with compact support.

(ii) The space of periodic smooth sections is denoted by C3y(Y; HH?).

iii) The space HL(Y;HH') is deﬁned as the set {¢ = (¢1,¢2)} of all measurable

#
sections of HH' such that ¢ € (Hj y(Y))*.
iv) The space Vd“’ Y) is the completlon of {ue€ CFy(Y;HH)} with respect to
#,H #,H
the following norm, ||uHde(y Hu||Lz (v T ||d1VHuHL2 L(Y)
We now state a version of Theorem 2.16 from [13] which will be used in our analysis.

THEOREM 5. Let F e L*(; VT (Y)*) such that

/Q<F(33),¢( )>vd“f (V)= Vi, (y)dﬂU =

for all ¢(x,y) € L*(; Vd“’( )) with divig ¢ =0 for a.e x € Q. Then, F =V, with
e L LY x(Y)/R).

3. Definition and properties of unfolding operator. It has been proved in
[9] for Y = [—~1,1)? that there is a canonical tiling of H' associated with the structure
of H' as a group with dilations, defined as follows.

DEFINITION 6. Let € > 0 be fized. Let a typical point of Z3 be denoted by k =
(k1,ka,ks). Define Y = 6.(2k - Y). Then {YF : k € Z3} is a tiling of H', i.e.,
YENYi=¢ if k#h and H' =, cp0 Vi
The above tilling also holds for Y = [0,2)3. We will use the tiling of Q with Y = [0,2)3.
A slightly modified definition of greatest integer function will be used. Let 2 € H!,
then z € 2k-Y for some k € Z3. Here we can write x = 2k -y for some y € Y. Thus, we
have z1 = 2k1 + y1, T2 = 2ka + Y2, T3 = 2ks + y3 + 4(kay1 — k1y2). It shows that 2k,
2ko, and 2ks are the greatest even integers less than x1,zs, and x3 — 4kayr + 4y ko.
This leads us to define the greatest even integer function. For any r € R define [r], =
greatest even integer less than or equal to r. An analogous definition of the even
fractional part is {r}. =7 — [r].. For any x € H!, define

([z1]e, [w2]e, [73 — 2([z2]e{m1}e — [T1]e{m2}e)]e) -

(ol =

The fractional part of x in H' is defined by

{r}m=2[ ] cx = (21 — [®1]e, T2 — [22]e,
z3 — 23 — 2([z2]e{z1}e — [T1]e{T2}e)le — 2([T2]e1 — [T1]e72))
= ({zl}& {$2}65 x3 — [173 - 2([x2]€{$1}6 - [xl]e{mQ}e)]e - 2([1‘2]6131 - [l‘l]emQ)) .
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Now, note that x; = [z;]. + {«;}. for i =1,2. Using this identity, we have

2([w2]exr — [T1]ex2) = 2([w2]e[T1]e + [2]e{T1}e) — [T1]e[T2]e — [T1]e{Z2}e
=2([z2]e{z1}e — [T1]e{z2}e)-

Hence, for € H', the definition for the fractional part can be rewritten as

{z}u = ({@1}e, {z2}e, 73 — [23 — 2([22]e{z1}e — [w1]e{T2}e)]e
- 2([x2]e{x1}e - [xl]e{$2}e))~

Now for any x € Y7, we can recover k from z as
1 /72 T x
k=(kukoke) =5 ([2] L [2] |3 —2lee/eledar/ce + 2a/elfoa/e)e] ).

For any = € H, using the definition of [|g and {}g, we have

(3.1) =20, [%x]H ¥l {5%3:}]1iI — 5. (2 [(5%1‘]]& : {%x}H) — 5. <2k : {5%33}1&) .

Let € > 0, and 2 C H! be a bounded domain. Let E. = {k € Z3 : YZ C Q},
Q. = UkEEE Y, and A, = Q\Q.. Now with the above notations, we are in the position
to define the unfolding operator in the context of a Heisenberg group.

DEFINITION 7 (unfolding operator). Let € > 0, then the e-unfolding of a function
¢: Q2 — R is the function T¢¢: Q2 x Y — R defined as

T%(¢)(x )—{ o (o (2[0:2] ) -ooy) for @y e xy,
T 0 for (my) eAx Y.

The operator T° is the unfolding operator; some important properties are given below.

PROPOSITION 8. Let the unfolding operator T¢ be defined as above, then T¢ is
linear and for ¢1,02: Q2 =R, T(d1¢p2) =T (d1)T°(d2).

This follows directly and the important L' integral identity is proved below.

1
PROPOSITION 9. Let ¢ € LY(Q). Then, / pdr=— T°(¢) dady.
Qe |Y| QxY
1
Proof. We have — T¢(¢) dxdy
|Y| QxYy

- le/ﬂ/ygb (55 (2 [%mhﬂ) .5€y) dxdy:kéa |11//,5/y¢(6€(2k) - bey) dady
=3 5 [ o0 Vel = 3 g [ 60088 Vlay

keE: keEE.

We make the following change of variables as
21 =e(2ky + 1), 22 =£(2ka + y2), 23 =7 (2ks + y3 + 4(kayr — k1y2)).

We have dz = e*dy. By the above change of variables, we have

1
— T (¢p) dxdy = dz = dx.
v | 1@y k;g/ykgqﬁ(z)z | ods :

The above integral identity gives us the following proposition.
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PROPOSITION 10.
(i) Forp € [1,00), the operator T¢ is linear continuous from LP(Q) to LP(QxY).

(i) — T (¢)dwdy = /Q ddz — / bdz = / ddz.

Y| Jaxy A- Q.

(iii) ’fQ $dr — i [y T5(6) dxdy‘ < J,. |6lda.

. - 1

(iv) [17%(o)lr@xy) < Y7 (|0l Lr(0)-
Here, we are considering the domain as a bounded open subset of H'. Since the
Hausdorff dimension of H! is 4, then the cardinality of the set

{k € Z* : Y N 0Q is nonempty}

is O (&%). Hence [Ac| = O(e). Also ya. — 0 pointwise as € — 0. Hence, we have the
following proposition.

PROPOSITION 11. Let {u.} be a bounded sequence in LP(2) with p € (1,00) and
v e L1(Q) with % + % =1, then [, u.vdr—0 ase—0.

Proof. Since xp, — 0 as € = 0, by the Lebesgue dominated convergence theorem,
we get [, xa.|v|?dx — 0, and by Holder’s inequality, we have [, wu.vdx— 0. 0

Remark: In the theory of homogenization or multiscale analysis the final goal is to
pass to the limit as ¢ — 0. If functions in some integral satisfy the hypothesis of
the Proposition 11, say, for example, u. and v are as in Proposition 11, then, we use
the following convention, [, u.v = ﬁ Jaxy T (ue)T¢(v), that is instead of writing
approximate equality, we choose to write equality since at the end, we will pass to the
limit € — 0.

LEMMA 12. Let ¢ € C°(Q). Then, [|[T%(¢) — Plloo >0 in A xY ase—0

Proof. Since ¢ is a compactly supported smooth function, it is Lipschitz, let’s say
with Lipschitz constant L. Fix z € ).. Then

T (¢)(x.y) = ¢(a)| =0 (26 [d12] -b.y) = 6(a)| < L|o—26. [31a] -0y
<cd (255 [%xhﬂﬁs {@x} 26, [%x} ~5€y)
<cd (55{5%x}H, 5Ey) < Ce.

The last two inequalities follow from Proposition 3 and hence the result follows as
e—0. ]

Since C°(Q) is dense in L?(2), the above lemma leads to the following.

LEMMA 13. For v e L%*(Q), we have T¢(v) — v strongly in L?(Q x Y).

R3

H

We recall the definition of two-scale convergence for the Heisenberg group [13].

DEFINITION 14. A family of functions {u.} € L?(Q2) is said to be two-scale con-
vergent in H' to ug € L>(Q x Y), if for any ¢ € Ce(Q;Cxy(Y)), we have

1

(3.2) tim [ )y (.0, () do=gr | wolwy)o(ey) dedy.

We have already discussed in the introduction that two-scale convergence of a sequence
in L2(Q) is equivalent to weak convergence of the unfolded sequence in L?(2xY). This
result also holds in the Heisenberg group, which is stated in the following proposition.
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PROPOSITION 15. Let {v.} be a bounded sequence in L?(Q2). Then the following
statements are equivalent:
1. v. two-scale converges in H' to vy € L2(Q x Y).
2. T¢(v.) weakly converges to vg € L>(Q2 x Y).

Proof. The proof is based on Lemma 12. For ¢ € C°(;CFy(Y)), for € > 0
small enough, we have

(3.3)
/st(o:)qﬁ (x,(;% (:L')) dx = /QxyTE(UE)QS (65 (2 {(;%x} H) '6E(y),y) dzdy + o(1).

Let v. two-scale converge to vg in H! and Tv. — 9y weakly in L2(2xY). By passing
to € = 0 on both side of (3.3), we get

1
— vo(z,y)P(x,y) dedy = to(x,y)P(x,y) dedy.
|Y| aQxy |Y| QxYy
As ¢ € C(Q;CFyY) is arbitrary, it implies vo(z,y) = to(z,y) a.e. in 2 x Y. d

3.1. Averaging and adjoint operators. Let u € LP(Q) and v € L1(Q x Y).
Then, we compute

1

v QXyTS(U)(%y) v(w,y) drdy =

w7 (20 [0xe] - dew) viay) dudy
- Z M/E/ U(25s {%x}H-&;y) v(z,y) dzdy
- Z Y| // 5:y))v(6:(2k) - 6.2,y)etdzdy.

keE.

Applying the following change of variables

r1 =€(2k1 +y1), T2 =€(2k2 +y2), 23 :52(%3 +yz +4(kay1 — y2k1)),

we obtain ﬁ QxyTE(u)(x,y)v(x,y) dxdy
2 |Y|/6(2k: Y)/ “0ez {519:}H)d:17dz
(3.4) :kga /wk_y)u( )<|Y/y (5 LEI T ENCAEIS dz> da

:/Qu(m) <|Yl|/yv (25E {%m]ﬂ'&z,{&% (w)}H) dz) dx.

This motivates us to define the following.

DEFINITION 16. For p € (1,00), the averaging operator U. : LP(2 x Y) — LP(§2)
1s defined as

\y| Jy ¢ ( [514 +0e2,{01 (JU)}H> dz a.e.x € Q,,
0 a.e.x €A,.

Us(9)(x) = {
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By (3.4), we have for ¢ € LP(Q) and ¢ € L1(Q x Y),

1

/ Ua() @pila)de = o [ o) T () ) dady.
| | QxY

Hence, this implies that the adjoint operator of T¢ is U in the above sense. Now, we

will see how the unfolding operator behaves with gradients.

2. Unfolding of the gradient. Throughout this article, we will denote Vg
and Vy ,, the gradient with respect to z and y, respectively, on the Heisenberg group.
Similarly, divg and divy,, denote the divergence with respect to = and y, respectively.
Now, we will see the relation between Vg and Vg, and between divyg and divy,y.
Recall the horizontal vector fields

0 0 0 0
Xi1=— +2x9— Xo = —2x1 —
! 5‘x1 + xzal'g’ 2T ((91'2 18333’
0 0 0 0
Yi=—+2y0—, Yo=——2y1—.
! o b2 0y3 ? 0y Yy 0ys3

Let ¢ € H} () and let x € Y. Then
T°(9)(,y) = ¢((2k1 +y1),£(2ka + yo), €% (2k3 + y3 +4(kayr — k1y2)) = ¢(0(2k - y))

for any y € Y. By applying the horizontal vector field Y7 on T=(¢), we get

Y (T*(6) () = (5‘3 ; zyaj) (6(5(2k 1))

= e 2 (52K )+ 222k + )y (522K )
:5T5(6)8£>+—25TE E( ) z,y) =T°(X19) (2, y).

Similarly, we have Y2(T°(¢)(z,y)) =cT%(X2(¢)). Hence using these two relations, we
get the following identities:

Vi (T%(0)(2,y)) = T°(Vuo) (z,y),
divey (T°(¢) (2, y)) = T (divad) (2, y).

THEOREM 17. Let {u.} be a sequence in HE(Q) such that u. — u weakly in
H;(Q). Then there exists a unique uy € L*(Q; Hy, 5(Y)/R) such that

(i) T¢(us) — u strongly in L2(2 x Y),

(ii) T°(Vmue) = Viau + Vi ur weakly in (L2(Q x Y))%

Proof. First, we will show that the limit of 7¢(u.) is independent of y. Let

T¢(us) — @ weakly in L?(Q x Y) and we need to show that 4(z,y) = @(x). To see
this, for ¢ € C°(Q2 x Y)), consider the following:

(3.5)

/ T (Varue ) (a,y) dady = | Vi (T (ue) (2, 9))b(,y) dady
(3.6) QxY QxY

= —/ T° (ue)(z, y)divm 4 ¥ (x, y) dedy.
[92°9%

As T¢(Vuue) is bounded in L*(Q x Y), we have [, , eT°(Vau)i(z,y) — 0 as
e—=0.Ase—0in (3.6) we get [,y @(z,y)dive yp(z,y) =0 for all p € CX(Q x Y).
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Hence Vi yi(z,y) = 0, implies that @ is independent of y. On the other hand by
weak convergence of u., we have v = My (4) = 4, where My (@) = ﬁfY iz, y)dy.
So, we have the weak convergence of T¢(u.) — u in L*(Q x Y). Now for the norm
convergence, consider

/ (T¢(ue) — T¢(u))? da < |Y|/(u5—u)2dxdy%0a5{—:%0.
QXY Q
We know from Lemma 13, that [|T%u|| r2oxy) = [[ullz2oxy)- Thus, we have

1T (ue)ll L2 @x vy = ullL2@xy)-

Hence weak convergence with norm convergence implies the strong convergence. This
proves (i) of Theorem 17.

For the second part, we will use the test function of the form ¥ (x) = (z,d1(x))
for ¢ € (C2° (9, 0% (Y)))? with divyg,yy =0. Let us consider the following:,

/Q Viuet (2,0, (x)) do = /Q T (V) ) (5-(2[6:@)] ) v) dody.

Let T¢(Vyu.) — & weakly in (L?(Q x Y))2. Now, using integration by parts and the
relations between Vi and Vi, divyg and dive, given in (3.5), we get

/Q T (6 (20 @) v) )
= [ Ve (5 (2[5.@), 0) )

xY €

- —/QxyTE(us)(:c,y) [diva (65 (2 {65 (x)]H : y) y)}
:_/ T° (ue ) (2, y)Te (divay) (z,y).
QxY

By passing to the limit on both sides, we get

/ oz, )(z,y) = —/ u(z)divgy (x, ).
QxY

QxY

Thus, we get / (&0 — Vru(x))y(z,y) dedy = 0. Convergence of unfolding sequences
QXY .
implies, &, Vru € (L?(2xY))2. Hence (&o(z,y)—Vyu(z)) € L2(Q; (V#‘ﬁ(Y))*) Since

(Ce(0xy(Y)))? is dense in L (€ (Vq‘icifﬂvﬂ(Y)))7 we get
/ (&0 — Vru(z))(z,y) dedy =0 for all ¢ € L (Q; (V5E(Y))) with divey =0.
QxY

Hence, (§o — Vyu) is perpendicular to the divergence free vector field. We get from
Theorem 5 that there exists a unique uy € L*(€, L, i (Y)/R) such that

50 — VHU = VH’yul.

Since & and Vgu are in (L*(2 x Y))?, we see that uy € L*(€%; Hj, 5(Y)/R). Hence,
we have the second convergence. O
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The unfolding T exhibits more nice properties, which are useful in applications.
PROPOSITION 18. Let u. be a bounded sequence in LP(Q) with p € (1,00) satis-
fying
e[ Xitell o) <C fori=1,2.

Then there exists a subsequence and 4 € LP(Q2) with Y4 € LP(Q X Y') such that

(i) T%(ue) = @ weakly in LP(Q2 X Y),

3.7
(3.7) (i) eT*(Xue) = YiT (ue) = Y weakly in LP(2 xY) fori=1,2.

Proof. As u, is a bounded sequence in LP(2), by properties of unfolding operator,
we have T¢(u.) is a bounded sequence in LP(Q2 x Y'). Hence by weak compactness,
there exists 4 € LP(2 x V') such that

T°(ue) = @ weakly in LP(Q x Y).

Let ¢ € C°(Q2 x Y), consider
[ ertunodsay= [ Vir(oodsdy=— [ T%(w)Visdsdy.
QXY QXY QxY
Using the weak convergence of T (u.), we pass to the limit as € — 0 to get

lim eT® (X;ue)pdady = —/ uY;¢ dxdy.
=0 Jaxy Qxy

The above equality implies the second part of the proposition. ]
The above proposition can be written in the following form.

PROPOSITION 19. Let {u.} be a bounded sequence in LP(2) with p € (1,00)
satisfying

€ ||VHUE||LP(Q) <C
Then, there exists a subsequence and @ € LP(Q; HE(Y)) such that

(3.8) T¢(u.) — @ weakly in LP(Q; HY(Y)),
' eTe(Viue) = Vi, T¢ (us) = Vi@ weakly in (LP(Q x Y))2.

Now, let u. be a sequence in Hy(£2) which weakly converges to u in Hg (). Then,
by compact embedding, u. — u strongly in L?(Q). By the properties of the unfolding
operator, we have T¢(u.) — u strongly in L?(Q x Y). Thus, we have the following
proposition.

PROPOSITION 20. Let {u:} be a sequence in Hy () weakly convergent to u in
HEY(Q). Then T¢(u.) — u weakly in L?(; H5(Y)), and strongly in L2(2 x Y).

4. Homogenization via a periodic unfolding operator. In this section, we
study the homogenization of two problems, namely, a standard oscillation problem in
the Heisenberg group and the homogenization of an optimal control problem with high
contrasting diffusivity coefficients. An homogenization problem with high contrasting
coefficients together with high oscillations is itself challenging; see our recent articles
[24, 25] in this direction. See also [28]. We are investigating the applicability of
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the introduced unfolding operator in particular to optimal control problems in the
Heisenberg group. At this stage, we would like to recall that the unfolding operator
can be used to characterize the optimal control in the homogenization problem (see
[2, 23, 26]) in the Euclidean setup.
Let A=la;;]7,—, :H' = Mzy2(R) be a matrix valued function with the following
properties:
1. The coefficients a; ; : H' — R are Heisenberg Y-periodic for all i,j = 1,2,
bounded and measurable functions.
2. The matrix A is uniformly elliptic and bounded, that is, there exist o and
such that the following two conditions hold:
(a) [|A(z)v]| < B||v|| for all v € R? and for all z € H. Since a; ; for i,j =1,2
are Y-periodic, it is sufficient to hold for z €Y.
(b) For all z € H! or x € Y and v € R2, A satisfies (A(z)v,v) > a|v]?.
For each € > 0, denote A®(x) = A(01(z)). The map x — A°(x) can be realized as a
moving frame with a section of the vector bundle of symmetric linear endomorphisms
of the horizontal fibers. As an application of the unfolding operator on the Heisenberg
group, we will consider the following homogenization problem: for f € L?(Q), consider

{—divH(AEVHug) +u.=fin Q,

(4.1) Af(2)Vyue - ng(z) =0 on 0.

Here ny = C(x)v, where v is the Euclidean outward normal on 9. More precisely,
we are considering the following variational problem: find u. € H}(Q) such that

(4.2) /QAEVHuE-VHquac—i—/QuEgbdx:/quﬁdac for all ¢ € H(Q).

For every € > 0, The Lax-Milgram theorem guaranties the existence of the unique
solution u.. By taking u. as a test function on both side of (4.2), we get [uc || z1(0) <
i|| fllz2(q), where « is the elliptic constant. Our goal is to analyze the asymptotic
behavior of the sequence of solution u. as the periodic parameter € — 0. The present
problem is not new, and it can be studied via two-scale convergence also. But our
aim in this article is to introduce the unfolding operator, and through this standard
example, we are exhibiting the easy way of studying the problem using the unfolding
operator. Subsequently, we study nontrivial optimal control problems like optimal
control problems with high contrasting diffusive coefficients.

The limiting behavior of the sequence of solutions u. is summed up in the following
theorem.

THEOREM 21 (two-scale limit theorem). Let {u.} be the sequence of solutions to
(4.1). Then

T¢(u.) —u strongly in L*(Q x Y),
T¢(Vyue) — Viu + Vi yui weakly in (L*(Q x Y))?,

where u € Hy(Q) is independent of y, and (u,u1) € Hg(Q) x L*(Q; Hy 5 (Y)/R)
satisfies the two-scale variational system

[ AWTau(o) + ey (2,9)) - (Vi) + Vo0 (,0) oy
(4.3) X
[ ulwpota)dsdy= [ fa)o(w)dody
QxY

QxY
for all (§,61) € HE(R) x L2(9 HY (V) /R).
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Proof. To prove the above theorem, the periodic unfolding operator on the Heisen-
berg group will be used as the main tool. Since, we have the uniform bound on
[[te|| 712 (), from Theorem 17, up to a subsequence, we have the existence of (u,u1) €
HY(Q) x LQ(Q;H#H(Y)/R) such that

T¢(u.) —u strongly in L2(Q x Y),
T¢(Vyue) — Viu + Vi u; weakly in L*(Q x V).

The proof will be completed if we are able to show that (u,u) satisfies the variational
form (4.3). The oscillating test function will be used to prove that (w,u;) is the
solution to the limit variational form. Let ¢ € C*°(Q) and ¢; € C°(£; CFu(Y)). Let
@5 () = ey (x, 01 (z)). Then, we have the following convergence:

T¢(¢) — ¢ strongly in L*(2 x Y),
T¢(45) — 0 strongly in L*(Q x Y).
Now, by the periodicity of ¢; in y and scale decomposition (3.1), we have ¢5(z) =

ep1(x,01(2z)) = ep1(x,{01(z)}m). Now, apply X; on ¢5. Using the homogeneous
property of the horizontal vector fields with respect to the dilation 8y, we get

Xi1(¢5(x)) = 5% (at, {5% (m)}H) —1—52372% (x, {(5% (m)}H)
+ g (e {n@},) (2] 5 ({00},
=X (x’ {5% (x)}]HI> i (x’ {6é <x)}]H[) ’

Similarly, we compute Xo(¢5(x)) =eXo¢ (x, {5; (:c)}H) + Y1 (:v, {5; (x)}H) .
Combining the above two equalities, we get the following relation:

Vu(i(z)) =eVud (%%x) + Vi1 (1’75%93) :
Now applying the unfolding operator on both sides and passing to the limit, we get
T¢(Vue5) — Vmyé1 strongly in L?(Q x Y).

Since ¢+ ¢ € H(Q), we can use this as a test function in the weak formulation (4.2)
to obtain

/QAfVHuE (Vuo + Vuei) dz +/Qus(¢+ ¢7) dw = /Q f(¢+ ¢7)dx.
Applying the unfolding operator on both sides of the variational form, we get
/QXY T°(A*Vue)(z,y) - T*(Vuo + Vuoi)(z,y) dzdy
[ T e T ok oD dady = [T @ TG + 65 o) dady

for all ¢ € H:(Q2). As A is Y-periodic, it implies that T(A®)(x,y) = A(y). Using the
convergence of T¢(uc), T¢(Vyue), and T¢(¢5), we can pass to the limit as € — 0 in
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the above integral equality to obtain

A(y) (Viru() + Vi yu (2,9)) - (Ved(@) + Visy i (z.y)) dody

(44) QxyY

+ / u(a) () dady = (2)(x) dedy
QxY

QXY

for all (¢,¢1) € C®(Q) x CX(Q;CFy(Y)). By the density, we have that the above
equality is true for all (¢, ¢1) € Hg(€2) x L*(Q; Hjy () /R). In order to get the conver-
gence of the full sequence it is sufficient to show that the limit variational form (4.3)
admits a unique solution. Uniqueness will be proved if we establish that the following
bilinear form B : H(Q) x L%Q;H#H(Y)/R) x HE(Q) x L%Q;H#H(Y)/R) — R,
given by

A(y)(Vuu + Vi yur) - (Vag + Vi, ¢1) dedy —l—/ ug dxdy
QxY

B((um1), (6, 1)) = /

aQxy

is elliptic. The ellipticity of B follows from the ellipticity of A, that is,

B((6,61). (6,60) > 5 (911310 + 1917 2(0u113 0y /)

This completes the proof of the theorem. 0

One-scale problem: We can write the variational form (4.3) which is in two-
scales in a more explicit way using the cell problem. More precisely, we can get the
one-scale form (homogenized equation). In order to write the scale separated form,
let us put ¢ =0 in (4.3) to get

(4.5) /Q . A(y)(Vau(z) + Vi yui (2,y)) - Viy¢1 (2, y) dedy =0.

Consider the following cell problem, for i =1,2, find Z; € H#H(Y)/R such that

(4.6) /Y A) Vi Zi(y) - Vi) dy = — /Y Aly)es - Vi€ (y)dy

for all £ € Hy w(Y)/R. Here e; for i = 1,2 denotes the standard basis for R%. Using Z;,
we can write uy(x,y) = Z?zl Zi(y)X;u(x). Now put ¢; = 0 in the variational form
(4.3) and substitute u;(z,y) = Z?zl Zi(y)X;u(x) to get

2
/QxyA(y) <VHu(x)+;VH,yZiXiu> -Vuodrdy + \Y|/Qu¢dx: |Y|/Qf¢dx.

The equality above can be written as

(4.7)

/ </ A(y)([gxz + [VH,yZl VH,yZ2]> VHU . VH¢dI+ ‘Y‘/ ud)dz = |Y|/ fd)dx
o \Jy Q Q

Denote the homogenized constant coefficient matrix

1 0 VAR EVZ
Ag=[ A I ViyZ1 Vg Zo|dy)= | A dy.
0 /Y (V) (Lax2 + [Viy Z1 Vi Zs] dy) /Y () ({0 1} + [YQZl }/2Z2:|) Y
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Reference cell

o(1)
B Ola)

£ — CO

Fic. 2. Composite material.

Hence the variational form (4.7) reduces to

(4.8) /AOVHU-VH¢dx+ |Y|/ updr = |Y|/ fodx.

Q Q Q
The above variational form holds for all ¢ € H(€2). Hence the the varional form (4.8)
corresponds to the following strong form:

(4 9) —diVH(A()VHU) + |Y|U = |Y|f in Q,
' AoVau -ng = 0 on 9.

This is the homogenized system corresponding to (4.1).

4.1. Optimal control problem with strong contrasting diffusivity. Now
we will see homogenization of an optimal control problem having strong-contrasting
diffusivity coefficients in the state equation or constrained PDE in a bounded domain
Q C H'. First of all, we remark that we do not have a uniform bound on the solutions
due to the lack of a uniform ellipticity constant in €. We have to exploit the different
bound obtained in the high contrasting and low contrasting regions. Further, the
limit analysis depends on the applications of control whether it is on the conductive
part or the nearly insulating part. Let us describe the setting of the problem. Recall
that Y =[0,2]® and E. = {k € Z3: Y7 C Q}. See Figure 2 in the Euclidean setup and
see [24] for a study with hyperbolic problem.

Let M,B C Y such that Y = (BUM)°. We also assume that M is simply con-
nected with C™!-boundary in the usual sense. Now, for k € E., define Bf = 0-(2k -
I), M = 0.(2k-M). We define B. and M. as B: = {Uycp. Bi}UA:, Me=U,ep. M;.

4.1.1. Control acting on M,. For each ¢ > 0, let L?(M,) be the admissible
control set. Let A%(x), Q. be as defined earlier. For 6. € L%(M.), consider the
following L?-cost functional, J.(ue,0:) = 3 [ [ue — ual>dz + § [, |0c[* dz, where
p >0 is a regularization parameter and u. satisfies the following constrained PDE,

(4.10)

—divig ((xam. +e%xB.)A°Vrue) +ue = f + a0 in Q,
A% (z)Vyue -npp =0 on 09
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with f € L?(£2). The optimal control problem is to find (u.,0.) € Hg(Q) x L*(M.)
such that

(4.11) Je (e, 0c) = inf{J. (ue,0c) : (ue,0.) satisfies (4.10)}.

Indeed the uniform bound is lost in the region B.. Note that M. acts as the (highly)
conductive region relative to B, which is nearly an insulating region (see [24, 25, 28]).
But, for each fixed £ > 0, A® is uniformly elliptic and p > 0 implies that J. is strictly
convex. Hence, the classical method of calculus of variations ensures the existence

and uniqueness of (i, 0:). We aim to analyze the asymptotic behavior of the optimal
solution (&c,0;) as ¢ — 0. The following theorem gives the characterization of the
optimal control at the € stage which is essential for our analysis.

THEOREM 22. Let (u.,0.) € H(Q) x Li)H(Y) be the optimal solution to the

optimal control problem (4.11). Then, the optimal control 0. can be written as

(4.12) T¢(0.) = %TE(BE),

where Ve satisfies the following adjoint PDE:

(4.13) —divig((xar, +€*Xp,) A VaT:) + 0 = (0@ — ug) in Q,
. A*Vyv. -ng =0 on 0.

~

Conversely, suppose (le, Uc,0:) satisfies the following system,

_diV]HI((XME + &‘QXBE)AsVHﬂE) +u.=f+ XJWE@E in €,
(4.14) —div((xar. +2xB.) A VrD.) + 0. = (Gie — ug) in Q,
Te(0:)(z,y) = —xar(y) 3 T°(0:) (2, y) in Q

with the following boundary condition

(4.15) {Aa(gc)VHa5 -ny=0 on 9N,

A*Vyt, -ng =0 on 0Q.

Then (i, 0.) is the optimal solution to the optimal control problem. (4.11)

Proof. Given 6. € L?(M.), denote F.(0.) = J.(uc(6.),0.), where u.(f.) is the
solution to (4.10). Evaluating the limit of

%(Fa(e’s +A0L) — FL(6.))

as A — 0 and denoting the limit by F”(6.)0., we get

FL(0.)0. = / (e — ug)we, dz + p/ 0.0, dz.
Q ME

Here wg_ is the solution to the PDE

(4 16) {diVH ((X]\/[6 + EQXBE)AEVH’LUQE) + wy, = XMEQE in Q,

A*Vywe, -ng =0 on 0.
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As (1,0.) is the optimal solution, we have F/(0.)0. =0 for all 6. € L?(M.). Hence,
we get

(4.17) /Q(ﬂg — ug)wp, dx = fp/ﬂ X 0-0- dz.

Using wy, as a test function in (4.13) and @, in (4.16), we obtain

(4.18) /Q(u’a — ug)wp, dx = /Q XM, U0° dx.

Hence from (4.17) and (4.18), we have

(4.19) /QXMEG_SGE dx = —% /QT’EXME 0. dx for all 6, € L*(M.).

The above equality implies 6, = *%XME’Us- Hence the unfolding integral equality

implies that
T4(0.)(2.9) = s ()T (0 (.0). 0
To analyze the asymptotic behavior, we need to introduce the following Sobolev
spaces:
H&H(B) = Closure of C2°(B) in Hy(B) norm,
V(M) = {y € Vii(Y) : supp(¥)ly € M}

As 0 € L?(M.), we have J.(u.,0.) < J.(u2,0), where u? is the solution to the state
equation (4.10), corresponding to . = 0. This implies that ||0|;2(as.) < C. The
variational form of (4.10) is given by

/ (xa. +€2x5.) AV, - Vi + / webde
(4.20) @ @

:/ fcédac—&—/ Xm.0-pdx for all p € H5(Q).
Q Q
By taking ¢ = 4. and 6, = #. as a test function in the variational form, we have

/ (XME + 52XBE)AEVH'&5 - Vrle dx + / U e dx
Q Q

:/fﬁsdx—l—/XMEésﬁgdx.
Q Q

By applying Hélder’s inequality, boundedness of ||0.|| £2(M.), ellipticity of A, we infer
the following:

(4.21)

el 22 (0) + X Vate || 22 (0) + llexB. Vatel 220
< C(||f||L2(SZ) + ||XM59€||L2(Q)) < C.

In a similar fashion, we also have the following bound on the adjoint state:

(4.22)

10l L2(0) + X0 Ve[| L2 () + llexs. Vate| L2 ()
< Ol L2y + lluallz2(0)) < C.

Note that we have the uniform bound of Vyii. in L?(M.), but the bound of Vyii.
is of order e71. In other words we do not have the uniform bound of @. in H}(€).
Hence we cannot derive convergence directly. But the unfolding operator introduced
earlier is helpful at this stage. The above bounds lead to the following convergence
theorem.

(4.23)
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THEOREM 23. Let (ﬂa,éa) be the optimal solution to the optimal control prob-
lem (4.11) and ve be the adjoint state that satisfies (4.13), then there exist u,v €
L2(Q),U1,V1 € L*(Q, Hy y(B)), and uy,v1 € L*(%; Hy, (M) /R) such that

(i) T¢(a.) —u+ xpUi, T°(0:) = v+ xVi,weakly in L*(Q x Y),

(ii) T°(xar. Vate) = xar (Vau + Vi yur), weakly in (L*(Q x Y))?,

T°(xm. Vuve) = xm (Vv + Viyv1), weakly in (LQ(Q xY))?,

(iil) T¢(exp. Vrte) — x5V, Ui weakly in (L*( x Y))

T°(exB. Vile) = X8V, Vi weakly in (L?(Q x Y))?,
(

1
(iv) T¢(0.) — —xar—v weakly in L?(Q xY).

The limits (u,v,u1,v1,U1, V1) satisfy the following variational forms,

Joxr AW (Vau+ Vi yur) - (Vad(z) + Vi yé1) dedy

+ Joxp AWV U1 Vagywdrdy + [o, (u+ xsU1)(¢ + xpw) dzdy
= Jovey (FG) = xar20) (64 x3) ddy,
Joxar AW)(Vav + Vi yv1) - (Vag + Vi y¢1) dedy

+ Jou s AW Va Vi VEwdedy + [, (v 4+ xBV1)(¢ + xBw) dzdy
= fsny(“ +xBU1 —uq)(¢ + xpw) dzdy

(4.24)

for all (¢, ¢1,w) € HY(Q) x L*(% H), 4(Y)/R) x L*(; H 11(B)).

Proof. Step 1. (4.22) and (4.23), and the integral equality property of the un-
folding operator imply the following uniform bound on the unfolded sequence:

1T (@) lLzaxyys 1T (X Vitie) || L2axyy,  I1T°(exs. Vi)l L2 @xy) < C;
1T ()l z2axy)s 1T (xar. VaO) L2 0xyys 1T (exB. VIt:)||lL2(oxy) < C.

Hence up to a subsequence, there exist U,V € L?(QxY), &1,&2, K1, K1 € (L2(2xY))?
such that

(1) T¢(a.) — U, T*(v.) — V, weakly in L*(Q x Y),
(ii) T (xar. VHuE) &1, T (exp. Viti:) — &, weakly in (L?(Q x Y))?,
(ii) T¢ (xar. Vo) = K1, T¢(exp. Vuv.) — Ko, weakly in (L?(Q x Y))2.

In the rest of the proof, we will identify U, V,&;,&, K7, and Ks.
Step 2 (identifying U and V). We will show that U can be decomposed as

U(z,y) = u(z) + Ui(z,y), where u € L*(Q),U; € L*(Q x Y), and Uy(z,")|sr = 0.
To see this, for ¢ € (C°(CFy(Y)))? with supp(¢(z,-)|y) C M, we have

(4.25) / Vi, (T% () () (2, y) dedy = / eT* (Vis(82)) () ddy.
Qx M Qx M
On the other hand, we have
(4.26) / Vi (T*(2)) (2, y) (e, y) dady = — / €T (@) divig () didy.
Qx M Q

X M

By letting € — 0 in (4.25) and (4.26), we obtain, [, . U(z,y)dive,y¢(z,y)dzdy = 0.
Since ¢ is chosen arbitrarily, we infer that U(x,-) is independent of y on M. Let
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U(z,y)|axa = u(r). Define Uy = U — u. Here we can see u € L?(Q), Uy € L>(Q x Y),
and U =u+ U;.

Following the same path, we can show the existence of v € L?(Q) and V; € L?(Q x
Y) with Vi (z,-)|ar = 0 such that V = v+V;. Hence from the characterization of optimal

- 1
control, we have T°(0.) = —=xn (y)T¢(9:) = —xm (y)—v, weakly in L2(Q x Y).
p p

Step 3 (identifying & and K7). To identify &, we will use test functions of the
form . (z) = (x,él (x)), where 1 € (C(Q, C2°(M)))? with div,® = 0 which is
extended Y-periodically. Consider

/QVHugngw (x,éé (x)) dx

~1 | T (6 (2[5, 0) ) dod.

Recall that T¢(Vgu.) — &, weakly in (L?(Q x Y))2. Now, using integration by parts
and the gradient relation between Vi and Vg, we get

/QxMTE(VHaE)(x’y)w (65 (2 [(2 (x)hﬂ ' y) 73/) dxdy
- /Q SV, T ) (6. (2 [5:0)] ) o) dedy

xM €

:7/QxMT€(ﬂs)(x’y) (aiva (5 (2[51 )] -v).v)) dedy

— [ T )T (v o) dady.
QxM
By passing to the limit on the both sides of the above equality, we obtain

(4.27) /Q (o) tay) dody = - /Q  ula)divit(a,y) dody.

The above equality holds for arbitrary ¢ € (C°(,C°(M)))? with divyg,y = 0.
Since we have assumed M has a CV'-boundary, from the proof of Lemma 3.3 in
[13], we infer that u € H&H(Q). Now we can perform integration by parts on the
right-hand side of (4.27) to obtain [, , (&1 — Vau(z))¢(z,y)dedy = 0. We have
&1, Vu(z) € (L2(Q x M))?. Hence & (x,y) — Vyu(z) € L?(Q; (VE5(M))*). Also,
since (C2°(Q,C°(M)))? is dense in L?(Q; (VT (M))), this implies that [i, (€1 —
Viu(z))y(x, y)dedy =0 for all ¢ € L2(€; (Vi (M))) with divie = 0.

Hence, & — Vyu is perpendicular to the divergence free vector field. We get from
Theorem 5 that there exists a unique uy € L*(Q, L%, (M)/R) such that & — Vygu =
Vi,yu1. Since, & and Vyu are in (L?(Q x Y))?, we see that uy € L*(Q; Hy, (M) /R).
Hence, we have the second convergence (ii). In a similar way, we can establish the
existence of v1 € L*(€% H, y(M)/R) such that T°(xa, Vo:) = K1 = xa (Vv +
Vi,yv1), weakly in (L2(2 x V)2

Step 4 (identifying & and K»). To identify K5, we use oscillating test functions.
Let v € (C2°(Q;C°(B))?, by extending Y-periodically, define 9. (z) = ¢ (z,d1(z)),
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and consider

1

/ exp, Vit = — | eT(xp, Viue) (@, y)T(4.)(z,y) dedy
Q |Y‘ QxyY

1

:m QxB
: EVH’yTa(Us)(%y)iﬁ (55 (2 {5% (w)}H . y) ,y) dxdy

B |Y‘ QxB €

_ T (ue) () (edivas (- (2[52 ()] -0) )

|Y| QxB

+ divgy ((55 (2 [65 (96)}}1_]1 . y) ,y)) dzdy.

By letting € — 0 in (4.28), we obtain

X O)T (V) @) (6 (2 [52@)] -v) ) dedy

(4.28)

| e =-[ () +Viwy)dive, i),
QxB QxB

Since ¢ € CX(Q;C(B)) is chosen arbitrarily, we infer that {& = Vg ,U; a.e. in
Q x B. Also & is supported in Q x B, hence {& = Vg, Uy a.e. Q x B. Similarly, we
can show that Ky = Vg, V. This also proves that Uy, V; € L?(Q; H&)H(B)).

Step 5. Let ¢°(z) = ¢(z) + 1 (z,1 (2)) + w(x,01(z)), where (¢, p1) € HE(Q) x
L*(; H, iy (M)/R) and w € LQ(Q;H(};HI(B)). Using 1. as a test function in the
variational forms (4.10) and (4.13) and passing to the limit ¢ — 0 by using the
convergences we have obtained in the previous steps, we arrived at the limit variational
forms (4.24).

Step 6 (convergence of the whole sequence). The variational form (4.24) is
the optimality system corresponding to the following optimal control problem: find
(a,U1,0) € Hfy(Q) x L*(% Hy iy (B)) x L*(2), such that J(u,Uy,0) = inf J(u,Us,0),
where (u, Uy, 0) satisfies

/ A(y) (VHU + Vthul) . (VH¢ + VH,y¢1) dxdy
Qx M

(4.29) + / (u+ xU1)(¢(x) + xpw) dxdy + A(y) VUi Vi yw dady
QXY QxB

= / (f +xm0) (¢ + xpw) dady
QxY

for all (¢, 1, w) € HL(Q) x L%Q;H#H(M)/R) X L2(Q;H37H(B)), and the cost func-
tional J defined as

1
(4.30) J(u,Ul,H):f/ (u+XBU1—ud)2dxdy+B/ |M][6]2 da.
2 QxYy 2 Q

As the cost functional is strictly convex, it ensures the uniqueness of the solution
to the optimality system. Hence all the subsequential limits are nothing but the limit
of the full sequence. 0

Scales separation. In the above equation, we have arrived at the limit optimal
control problem in the unfolded space with a combined macro-micro scale. Here in
this subsection, we want to see the limit optimal control in the scale separated form, in
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the macro scale only. Let us start with the state variational form (4.29). In variational
form (4.29) putting ¢, w =0, we get

(4.31) /Q y A(y)(Vau(z) + Vayui (2,y)) - Viyd1(z,y) dedy = 0.

Let us introduce the following cell problem: fori= 1,2, find Z; € H, 5(Y')/R such that
| AwVas i) Va€dy =~ [ Al Ty €lo)dy for all € € H) (M)
M

M
Here e; for i = 1,2 denotes the standard basis for R2. Using Z;, we can write u (x,y) =
E?:1 Z;(y) X;u(x). Now put ¢, ¢ =0 in the variational form (4.29) to get

(4.32) A(y)Vu,y U1 Va yw dedy + Uyw dedy = / (f —w)wdzdy.
QOxB QxY

As f,u are independent of y, we can write Uy(z,y) = (f(z) — u(x))n(y), where n
satisfies the following variational cell problem:

(4.33) /B (A(y) Vi) Vi yw(y) +n()w(y)) dy = /B w(y)dy for all w e HY y(B).

Now putting ¢1,w =0 in (4.29), and substituting the explicit form of u; and Uy, we
obtain

(4.34) /Q Ao(x)Vyu(z)Vye(z) dr + /Q (|Y|— /B n(T)dT) u(z)p(x) dx

:/Q<|y_/Bn(T)dT> f¢dx+/Q\M|e¢dx,

where Ag is the homogenized limit given by

B 1 0], Mz YiZ,
A= [ 4) ({0 1] * {YQZl YZD I

The cost functional reduces to

//|1_ Y+ fn— ual? dady + 2 /|M||9|2dx

The optimal optimal control is given by find (a,6)) € Hg () x L?(Q2) such that

J(1,0) =inf{J(u,0): (u,0)satisfies (4.34)}.

One can indeed write a one-scale homogenization for the macrovariable but we
omit it.

4.1.2. Control acting on B.. Here we will see the effect of controls when they
are applied in the low diffusive part. We begin by recalling that a two-scale homoge-
nization theorem can be proved in a similar fashion as earlier, but the controls acting
on B, behaves differently and the two-scale system is not completely decomposable
to provide a one-scale homogenization system. We will see the difficulty below. For
£ >0, let the admissible control set be L?(B.). The L?-cost functional .J. is given by
Je(ue,0c) = 1 [ |ue —uq|* de+4 st |6-|? dx, where p > 0 is a regularization parameter
and u. satisfies the following constrained PDE:

{divﬂ((XMs +e°xp.)A°Vyue) + ue = f + xp.0- in Q,

(4.35)
A®(z)Vhue -npp =0 on 9.
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The optimal control problem is to find (@, 0.) € H(Q2) x L?(B.) such that
(4.36) J.(te,0.) =inf{J. (ue,0.) : (uc,0.)satisfies (4.35)}.

Here also, we have a similar type of characterization theorem, as in Theorem 22.

THEOREM 24. Let (te,0.) € H5(Q) x L2 g(Y) be the optimal solution to the op-
timal control problem (4.36). Then, the optzmal control 0. can be written as T(0.) =

1
—xB(y)=T°(0.), where U, satisfies the following adjoint PDE:
p

(4.37) {—diVH((xME +e%xp. ) A VD) + U = (U — ug) in Q,

A°VuU: -ng =0 on 0N.
Conversely, suppose (ﬂg,@g,ég) satisfies the following optimality system:

—diva((xa. +€>xB.)A°Vaie) + @ = f + xp.0- in Q,
—divg((xam. +€2xB. ) A Vid.) + 9. = (e — ug) in Q,
~ 1 R .
T5(0:)(z,y) = —XB(y);TE(vs)(%y) in Q,
AS(I)VHﬁs Ny = O7 AEVH’[}E Ny = 0 on 0N).

(4.38)

Then (@i, 0.) is the optimal solution to the optimal control problem (4.36).

Following the same path as in the previous case, we obtain the following conver-
gence result and homogenized two-scale limit optimality system similarly to Theorem
23. We will not present the details as the analysis is similar.

THEOREM 25. Let (i.,0.) be the optimal solution to the optimal control problem
(4.11) and v, be the adjoint state satisfying (4.37), then there exist u,v € L*(Q),
Uy, Vi€ L2(, Hy(B)), and uy,v1 € L*(Q; Hy (M) such that

(i) T¢(ae) =~ u+xpUs, T (UE)AU—FXBVl,weakly inL*(QxY),

(ii) T¢(xar.Vutes) — xmy)(Vau + Vay,u), weakly in  (L*(Q x Y))?,
T (xn. VEte) = Xm (@) (Vv + Vi yv1), weakly z'n(LZ(Q xY))?,

(iii) T¢(exp. Vrie) = xpVa, Ui weakly in (L*(Q x Y))?,
(iv) T¢(0.) — —XBE(U+V1)7 weakly in L*>(Q xY). The limits (u,v,uy,v1,Uy, V1)

satisfy the following variational forms,

/ A(y) (VHU + vH,y’Ul) . (VH¢ + VH,y¢1) dxdy
QxM
+ Jou 5 AW)Va,y U1 Vi ywdedy + [, (u+ xsU1) (¢ + xpw) drdy
1
=/ f—xB(v+xBV1)) (¢ + xBw) drdy,
QxY P
(4.39)
/ AY)(Vuv + Vi yv1) - (Vud + Vi, é1) dody
Qx M
+ Joxy AW Ve ViVigywdrdy + [q, (v +V1)(6 +w) dzdy

= [ (U= w6+ w)dady
QxY

for all (¢, é1,w) € HA(Q) x L(Q; HY, (M)/R) x L2(Q; HE :(B)).
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The variational forms (4.39) are the optimality system corresponding to the fol-
lowing optimal control problem: find (@,Us,0,0:) € Hg(Q) x L*(Q; Hj 5(B)) x L*(€2) x
L?(Q2 x B) such that J(u,Us,0,60,) = inf{J(u,Uy,0,61)}, where

1
(440) J(u,Ul,H,Gl)zi/

(u+xsU1 —ud)dedy+B/ 0 + 6,2 dady,
Qxy 2

QxB

and (u, Uy, 6,07) satisfies the following variational form,

/ AgVyuVyodx + A(y)VH,yUlvH,yw dxdy
Q QOxB

(4.41) + /Q (e xpUh) @+ o) dady

— [+ xn0la) + 60)) (6-+ xww) dady
QxY
for all (¢, w) € Hj(Q) x L*(% Hj y(B)).

In contrast to the previous case, here the full scale separation is not possible.
This is because, if we put ¢ =0 in (4.41), the right-hand side reduces to [, (f(z) +
xBW)(0(z) + 01(z,y))w(x,y) dedy. Like before, we cannot introduce a cell problem
to write an explicit form of Uj, as 6 is dependent on the microvariable y. That is
why scales separation is looking difficult to us for the time being. The appearance
of control with respect to the y variable is something new in this scenario, perhaps
related to control problems in the cell which needs further investigation.

Remark: Throughout this article, we have considered the standard Heisenberg
group just to make the presentation simpler. This work can be carried out in any
n-dimensional Heisenberg group following a similar path.
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